
Comparison of the
Frontier Distributed Database Caching System

with NoSQL Databases

Dave Dykstra
dwd@fnal.gov

Fermilab is operated by the Fermi Research Alliance, LLC
under contract No. DE-AC02-07CH11359 with the United States Department of Energy

mailto:dwd@fnal.gov

 2

Outline

 Common characteristics of NoSQL databases
 The Slashdot Effect
 Frontier Distributed Database Caching system

characteristics
 CMS Frontier/Squid deployment examples
 Comparison of Frontier to NoSQL in general
 Comparisons to MongoDB, CouchDB, Hadoop

HBase, and Cassandra
 Conclusions

 3

The Slashdot Effect

 Slashdot Effect (or, slashdotting): when a too-
small server is overwhelmed by the same
request from too many clients
— Named for slashdot.org, a very popular “News for

Nerds” website that often hyperlinks to less-popular
sites

 For web servers, usual solution is to use a
Content Delivery Network (CDN) that either
replicates or caches the objects around the world

 Some database applications have similar need

 4

 “NoSQL” denotes a large variety of Database
Management Systems (DBMS)

 Primary unifying characteristic: not a Relational
Database Management System (RDBMS)
— Generally nested key/value instead of row/column

• Run-time flexibility, doesn't need pre-defined schemas
— Most don't support the RDBMS standard Structured

Query Language SQL
 Most popular NoSQL DBs support being distributed

and fault-tolerant – highly scalable on commodity HW
 Most give up atomicity of updates (ACID) and instead

have eventual consistency (BASE)

NoSQL common characteristics

 5

Frontier characteristics

 The Frontier Distributed Database Caching
System is designed for the Slashdot Effect –
many readers of same data, few writers
— Distributes RDBMS SQL queries (not “NoSQL”)
— RESTful, so cacheable with standard web proxy

caches (we use Squid)
— Web caches on client premises make ideal CDN

• Most network traffic on LAN, scalable as needed
• Practically maintenance-free

— Simultaneous same requests collapsed to one
— Simultaneous different requests queued at server

 6

CMS Offline Frontier/Squid
Conditions deployment

 Only custom software is Frontier servlet in Tomcat and
frontier_client in application on worker node farms

 Planning to replicate RDBMS & Frontier servers for availability

RDBMS

Offline
Frontier
Servers

Tomcat+
Servlet+

Squid

Tier0
Squids

Wide
Area

Network

Wide
Area

Network

Tier0
Farm

Tier1, 2, 3
Squids

TierN
Farm

Tier1, 2,3
Squids

TierN
Farm

 7

CMS Offline Frontier/Squid
Conditions stats

 For Tier 0, 1, & 2 (not counting Tier 3):
— Average 250 job starts per minute worldwide
— Average 500,000 total Frontier requests per minute,

aggregate average total 500MB/s
• Bursts at sites are much higher than average

 The 3 central server Squids at CERN only get
4,000 average requests per minute, 0.5MB/s
— Factor of 125 improvement on requests and 1000 on

bandwidth (not counting Tier 3)
 Vast majority of jobs read very quickly because

results already cached & valid in local Squids

 8

Squid & Frontier limits

 Frontier tomcat server
— 3-year old 8-core machine (Xeon L5420 @ 2.5Ghz):

• Without compression, easily saturates 1Gbit network out
• With gzip compression, drops to 25MB/s out (but saves

much bandwidth later in the caches)
• Adds 1/3rd overhead before gzip to avoid binary data

 Squid
— 2-year old machine (Xeon E5430 @ 2.66Ghz):

• Saturates 2Gbit network with one single-thread Squid
— modern machine (AMD Opteron 6140):

• Up to 7Gbps on 10Gbit network with a single-thread Squid
• Can get full throughput with two Squids on same port

 9

CMS Online Frontier/Squid
Conditions deployment

 Squid placement is very flexible for more bandwidth
— Hierarchy of Squids on every worker node
— Blasts data to all 1400 nodes in parallel

RDBMS

Online
Frontier
Servers

Tomcat+
Servlet+

Squid
Squids

 10

Frontier vs. NoSQL in general

Frontier NoSQL in general

DB structure Row/column Nested key/value

Consistency Eventual Eventual

Write model Central writing Distributed writing

Read model Many readers same data Read many different data

Data model Central data,
cache on demand Distributed data, copies

Distributed elements General purpose Special purpose

 11

MongoDB

 “Mongo” for “humongous” - for big, cheap data
 Stores binary JSON (JavaScript Object Notation) data
 Any field can be memory-indexed for performance

— Common in RDBMS, not common in NoSQL
 Flexible queries

— By fields, ranges, and regular expressions
— Similar to RDBMS, not common in NoSQL

 Only one write server per data item
— Copies are read-only, can take over as master if

master goes down

 12

MongoDB cont'd

• Scales by sharding, splitting writing of different
data to different servers
– Not great at Slashdot effect

 Used by CMS for Data Aggregation Service
(DAS)
— Needed the dynamic structure, liked other features
— Not a big installation though, only one server

 Supports MapReduce for distributing query
processing to where the data is
— An ATLAS evaluation showed this didn't work well

but it is supposed to be better now in version 2.0

 13

CouchDB

 Stores JSON
 RESTful interface

— Can use http proxy caches where needed
— Also easy to insert authentication proxy

 Automated, low-maintenance replication
 All copies get all data, all can read and write
 Uses MultiVersion Concurrency Control (MVCC)

— Feature of RDBMS – transactions, ACID
— Readers get consistent view
— Writing doesn't block reading
— Write conflicts automatically detected and aborted

 14

CouchDB cont'd

 Supports MapReduce
 Used by CMS for some data and workflow

management queues, job state machine
— CouchDB data replicated between CERN and

Fermilab, 3 replicas at CERN and 4 at Fermilab

 15

Hadoop HBase

 HBase is built on Hadoop Distributed FileSystem
— HDFS automatically distributes files and replicates

them across a cluster
— Very reliable and automated for large amount of data

 Modeled after Google's BigTable
— Billions of rows with millions of columns
— Good for search engine-like applications

 Very good at MapReduce
 Good for big installations, not small

 16

HBase cont'd

 Tunable replication level
 Also has SQL interface via Hive add-on
 Used by ATLAS distributed data manager for log

analysis and accounting on a 12-node cluster
— 8 to 20 times faster than Oracle for accounting

summary, depending on replication level
 HBase recognized by the WLCG Database

Technical Evolution Group as having greatest
potential impact of all the NoSQL technologies

 CERN IT is setting up a cluster

 17

Cassandra

 Like HBase, modeled after Google BigTable
 All nodes are masters, decentralized control for

geographically distributed fault tolerance
— Dynamic re-configuration with no downtime

 Keys and values can be any arbitrary data
 Has static “column families” used like indexes in

RDBMS
 Tunable consistency from always consistent to

eventual consistency
 Tunable replication level

 18

Cassandra cont'd

 Originally written by Facebook, but they
abandoned it in favor of HBase

 Used in production by ATLAS PanDA monitoring
system
— Hosted on 3 high-power nodes at BNL, 12

hyperthreaded cores each, 1TB of RAID0 SSDs
each

 19

Conclusions

•NoSQL databases have a wide variety of
characteristics, including scalability
•Frontier+Squid easily & efficiently add scalability

to Relational databases when there are many
readers of the same data
– Also enables clients to be geographically distant

•CouchDB with REST can have same scalability
•Hadoop HBase has most potential for big apps
•There are good applications in HEP for many

different Database Management Systems

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

